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ABSTRACT

Strong laws of large numbers for a sequence (Xn) of randomn
functions in D[0,1] are derived using new pointwise conditions

on the first absolute moments, which improve on known results.

In particular, convex tightness is not implied by the hypotheses

of the theorems. It is shown that convex tightness is preserved

when random functions are centered, and this result is applied

to improve some known strong laws for weighted sums in D[0,1].

A weak law of Jarge numbers is proved using a new pointwise con-

dition on the first moments and some weak laws for weighted sums

are improved upon by weakening the hypotheses. A study is made

of relationships among several conditions on (X ) which appear

as hypotheses in laws of large numbers.



1. Introduction.

1.1 Laws of large numbers for sequences (X n) of random functions

in D[0,1] have been obtained using a number of conditions on (Xn),

-j -such as convex tightness and conditions on the moments E IXn Ir

and others ([4],[13],[14],112]). For random elements in a Banach

space E, convexity conditions on E can be assumed, but such con-

ditions are not available in D[0,1] which is not locally convex

with the Skorokhod topology.

For real-valued random variables the classical formulations

of the strong and weak laws of large numbers are available and

satisfactory formulations of necessary as well as sufficient

conditions have been obtained (15],[8],[7]). Thus, the major

thrust centers around finding conditions which will convert point-

wise convergence (in some mode) into convergence in the Skorokhod

metric or, which is stronger, uniform convergence.

Necessary and sufficient conditions for pointwise convergence

to imply Skorokhod convergence are known in terms of the moduli

W x(6) and wx(6) which are used in D[0,1] (the notation is that of

[13). See [11], 2.6.1, p. 277, for additional details. In the

case of random functions in D[0,1], however, more useful conditions

implying Skorokhod convergence are desirable, preferably in terms

of the individual summands. Various integral conditions have been

used ([13],[141,[12]), some of which are listed in §3 and investi-

gated in 16.

1.2 For a sequence (Xn) of random variables, tightness is neitherhn



M 0

2

necessary nor sufficient for the law of large numbers, strong or

weak, to hold. However, the concept of tightness, together with

conditions on the moments of the random elements, has proved

natural and useful in providing sufficient conditions for laws

of large numbers, strong and weak, in Banach and Fr6chet spaces

(Q16,1 [12]).

In D[0,1], tightness has likewise played a central role,

but hitherto this concept has taken the form of convex tightness,

in which the compact sets involved are also required to be convex

([131,[1). However, it was shown in [3] that any compact convex

set in the Skorokhod topology is also compact and convex in the

* - uniform topology on D[0,1]. This fact limits the scope of appli-

cability of convex tightness as a condition on a sequence (X)n
of random functions in D[0,1], since if (X ) is convex tight,

n
then all random functions Xn must necessarily take their values,

with probability one, in a subspace of the Banach space D(0,1],

which is separable with respect to the uniform topology ([33,51).

In the classical strong law of R. Ranga Rao for identicallyA distributed summands ([93, or (6], p. 254 ff.) convex tightness

is not required. In §4.1, strong laws of large numbers for non-

identically-distributed random functions which do not require

convex tightness are obtained, using a condition generalizing the

basic lemmna used by Ranga Rao in the proof of his result. In 14.2

previous results of 14] and (133 are strengthened. In 55.1 a

new weak law is presented, and in 15.2 are found some improvements

on weak laws in (13]. Finally, in 16 comparisons of the various

integral conditions on the random functions is presented.
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§2. Preliminaries.

2.1 For the definition of the space D[0,1], as well as for the

definition and properties of the Skorokhod topology, we refer to

Chapter 3 of [1]. The Skorokhod metric is denoted throughout

by d, and I x~l = sup Tx(t)I , for x e D[0,1].

2.2 Let (0,F,P) be a probability space and make D[0,1] into a

measurable space by providing it with the a-algebra generated

by the Borel sets of the Skorokhod topology. A measurable map

X: 0 - D[0,1] is called a random element or random function. In

particular, X is a random function in D(0,1] if and only if X(t)

is a random variable for each t e [0,1]. The expectation EX of

a random function X can be defined pointwise by (EX)(t) = E{X(t)}

provided that it turns out that EX e D[0,1]. A sufficient con-

dition for this is that E liXil < -.

2.3 In general, when speaking of a partition P of [0,11, a finite

set of points (t 0 ,tl,...,tm) is meant with

0 = to < t < ...< tm_ 1 < tm = 1; or equivalently, intervals

111I2 , . . . ,I m I i  = [ti_lt i ) , i-l,...,m-1, and I m  [tm-lt m] .

The norm IIPII of a partition is the length of the longest sub-

interval: 1IPIP - max {tl - ti Given 6 > 0, a partitioni-0, . .. ,m
P is said to be 6-worse if min {t - t1 1 J > 6.

i-i, . . . by

2.4 The indicator function I A of a set Ace, A• F, is defined by
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IA (W) -0 if w 0 A

and

I () 1 if w a A.
= A

Also, "a.s." stands for "almost surely" or "with probability one".

2.5 For a given partition 0 = t0 < t1 <...< tm - 1, define the

operator Tm on D[0,1] by

m-1

Tm-x= I X(t i ) I [ t + x(l)I{ 1 }.i=o [t i+l)

If a partition is not specified, then define the operator Tm by

2M-1

TmX= I x(-m) I i+l x()I
i=O [E, -2i ) i+ x

The operator Tm is a projection of D[0,1] onto a finite-dimensional

subspace which is additive but not continuous.

2.6 By a Toeplitz matrix we mean an array (ank) of real numbers

satisfying (i) lim ank = 0 for each k=l,2,..., and (ii)
nk

lank I r 1, for each n = 1,2, ....

k=l

2.7 Two lemmas from [4] are listed.

LEMMA 2.1: If K is a compact subset of D[0,1], then

lim sup d(XTmX) - 0.I m- xcK

L3WOA 2.2: If x,y,u,v c D[o,l], then

d(x + u, y + v) : d(x,y) + II u I + v
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§3. Conditions on random functions in D(0,1].

Let (X n ) be a sequence of random functions in D[0,1]. For

quick reference various conditions on (Xn) are collected in this

section.

3.1 (X n ) is said to be tight if, to every e > 0, there is

K c D[0,1], compact, such that P[Xn 9 K] < e, for every n.

3.2 (Xn ) is said to be convex tight if, to every e > 0 there is

K c D[0,1], compact and convex, such that P[Xn i K] < e, for

every n.

3.3 (X ) is said to satisfy condition (T) if, to every e > 0,

there is K c D(0,1], compact, such that E IXnI EXnK]"l < E, for

every n.

3.4 (X ) is said to satisfy condition (CT) if, to every e > 0,

there is K c D(0,1], compact and convex, such that

E JIXn I(X nK]III < e, for every n.

3.5 (Xn) is said to satisfy condition (MT) if, to every c > 0,

there is a partition P of [0,13 such that

E ( max supI Xn(t) - Xn(ti-l) I ] < C,

for every n.

3.6 (X ) is said to satisfy condition (mT) if, to every e > 0,

there is a partition P of [0,11 such that

no
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max E[ sup IXn(t) - Xn(til)I] <
i= ...,m tI i

for every n.

3.7 (X is said to satisfy condition (RR) if, to every e > 0, idn
there is a partition P of (0,1] such that

max sup EIXn(t) - Xn(ti 1 )I <
.=,... ,m tel i nn

for every n.

3.8 (X n ) is said to be uniformly integrable .(UI) if, to every

e > 0, there is 6 > 0 such that E O n I[X n OB(6)] I < E for every

n, where B(6) = {x: II x II : 6).

3.9 (Xn ) is said to be stochastically bounded (SB) if, to every

e > 0, there is 6 > 0 such that P[ IIX nI > 6] < e, for every n.

3.10 (X ) is said to satisfy conditions (M) r, r 2 0, if (Xn)
nrn

has uniformly bounded A moments, i.e., if there is a constant C

such that E 1nr : C, for every n. We abbreviate (M) , r > 1,

to (M)r>1 .

3.11 For condition (M)l, i.e., for uniformly bounded first moments,

we write simply (M).

3.12 For each condition listed on (Xn ), the corresponding con-

dition for a single random function X in D[0,1] is obtained by

taking (X ) to be identically distributed.
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§4. Strong Laws of Large Numbers.

4.1 The generalization of the classical strong law to D10,1] is

the following theorem which was proved by R. Ranga Rao ([91, or

[6], Chapter 7).

THEOREM 4.1: Let (X ) be a sequence of independent, identi-
n

cally distributed random functions in D[0,1] satisfying

E IX111 < . Then lim I Xk - EX1II = 0, with probability one.
n - = 1

THEOREM 4.2: Let (X n ) be a sequence of independent random

functions in D[0,1] satisfying condition (mT) and I k-rE IiXkI r<
k=l

for some r, 1 ! r s 2. Then

1n
lim Ii (Xk - EXk) II = 0, with probability one.n-pw k=lk k

PROOF: An easy calculation shows that

max E[sup IX (t) - EX n(t) - (Xn(t ) - EXn(ti tcI. n

2 max E[sup IXn(t) - Xn(ti_)I]
i tel i nn -

and hence the sequence (Xn ) can, without loss of generality, be

assumed to satisfy EXn = 0, for each n.

Let c > 0 be given and choose a partition P of (0,11 such that

sup max Efsup IX n(t) - X n(ti)n i l, m t dI i
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WriteI-XXkI1~ (kTkl + TX T I

k=l k=l ki-mk

where T is defined in §2.5. Now

limit [ TmX k  = ix(t)r 0,
n ""k=l n =0.,m1 k=l

a.s., by Chung's strong law of large numbers.
n

Next, Ii 1 [ (X- - TmXk)IInk= 1 m

Sn
= max sup I (Xk(t) - Xk(tiW))I

i=l,...,m teI. k=l

1n
max l sup IXk(t) - Xk (t I

i=,t... Im k=l teIt

in i
= max 1 1 yk, where

i~l#..jM k=1

Y = sup IXk(t) - Xk(t )I, i = 1,...,m; k = 1,2,....
tE .i

Now for each i, (Y - E(Y )) is a sequence of independent random

variables with zero means and ElY i - E(Y i r ! 4rE IXkIr.

Thus, the strong law of large numbers yields, for each

i = 1,. ..,m, n
1ira (Yk EY) -0, a.s.

n k-l

SHence, lim [I1  [ (Xk - TmXk) [I
n k=1 nn

Hie £ ( 1 - Ey]

s lim [ max i n(Y EY i-,...,a k Yi

n i~le . n ,m k knk
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S 0 + lir I E[ sup IXk(t) - Xk(ti_ 1I]
n k-1 t-I

e by (1), a. s.

The proof is completed by letting e - 0 and excluding a

countable union of null sets. Q.E.D.

REMARK: The conditions of Theorem 4.2, in the case l<r92,

do not imply that (X n ) is tight. If r = 1, then tightness is

implied.

THEOREM 4.3. Let (X n) be a sequence of independent random

functions in D[0,1] satisfying condition (RR) and the following

condition:

To every e > 0, there is a compact set K c D[0,1] such that

1. E JIX n I [X nK] "1 < €, for every n,

20. nl n-r E( IXnI[XndK I1 - E "JXn l[XnK] I ) r <

for some lr:s2.

n
Then lim I (Xk - EXk) i = 0, with probability one.

n- nk=l

PROOF: Note that 10 implies that E IlXnI < , which in turn

implies that EXn exists for each n. Let E > 0 be given and let K

be a compact set such that both 1* and 20 hold. Put X - Xk I[X cR1

and Xk - Xk I[XkdK].
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Since K is compact there is 6 > 0 such that, for any x K,

jx(t) - x(u)I Ix(u-O) - x(s) l + C, (1)

whenever 0 < s < t < u < s + 6. (See [6], proof of Theorem 8.1,

p. 257).

By (RR) choose a partition P such that

sup max Sup EIXn (t) - Xn (ti i)I < e, (2)n i~,. mteI.

and, by adding points if necessary, arrange for

il < 6. (3)

Writekl X ((t) -EXk(t))I

(Xk (x(t) _ ,E.k(t))t I + W 1 11 1 1 + E JjXk 11 (4)k 1 k-1 ks1

Using (1) and (3) we have, for til !t < ti, i = ... ,MF

=1 k-i1n k. (t) IXkt))l t- I Xk(ti- 

1 n
+ sup nI (Xk(t) - Xk(t i-))l

teI i  k=i

n

+ up I (E t) EX (ti) M (-tCI i  k=l -

n

n I k(ti-0) - Xkti-l)l
k-i

+n k~llEX(t'0) -EX'ti.. ) .+ e. (5)



By the Strong Law of Large Numbers,

1n
lir I (Xk(t) - EXk(ti)) = 0 a.s. (6)
nf n k=1

for each i = 0,1,...,m.
By (2), max n EXtO

nax 1'i Ei-i .. .,m k=1

i.max n 1 ElXk(ti-0) - Xk(til)l < C. (7)

i=1, ... ,m k!

for every n. Now , IXk(ti-0) - Xk(ti l)
k=l

Sk=lki-0) - Xk(til)I - EIXklti-0) - Xklti-l)11 +

n (k tik )I)+(t

using (7) and thus, since the random variables are bounded, by

the Strong Law of Large Numbers,

- 1 n ,
lim - IXk(ti0)- Xk(ti 1 )I < C, a.s. (8)
n- k=1

for each i =

From (6), (7), (8) and (5), we get

1 1 n I
rm n I (Xk - EXk)tI = 0, a.s. (9)

Now m I n ( IIXkII - E <XkI) < 2e, a.s. (10)n k-i I I~I

by the Strong Law of Large Numbers, using hypothesis 2*. Using

(10) and hypothesis 1 we then have
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li1 + ,, E
n l (lljI +E IXkII

n-)- k-i1

n 1  (IXkll ElIXklI) l2 n .(1k k 1 E Jlk1 n ; E 11Xk11
k-i k-i1

< 2e, a.5. s.11

Using (11) and (9) we get, via (4),

-- 1 n
lir II 1 1 (Xk - 1Xk) II < 4 e, a.s.

n-l- nk-i

Taking a sequence (c ) of positive numbers converging to 0, wen

get, taking a union of null sets,

1n
li n i (xk - EXk) 0 - o, a.s. Q.E.D.n n k= 1k

REMARK: Condition 20 is somewhat complicated, but it would

seem to render Theorem 4.3 independent of Theorem 4.2. By itself,

1° is of course condition (T), and (T) together with (RR) implies

(mT) (§6, Lemma 6.11). Thus, if 2 is replaced by, say,

I n-r E JJXnl [Xn K] fir < 0e, this, for l<rS2, would imply

Or
I n-r E lX n1I < - and the hypotheses of Theorem 4.3 would implyn= 1

those of Theorem 4.2. If r = 1, Theorem 4.3 may still be independent
of Theorem 4.2 if 20 is replaced by n-I E I [X K] <

(here 1 follows and need not be stated).

COROLLARY 4.4: Let (X n) be a sequence of independent random. .
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functions in D[0,1] satisfying (RR) and such that there is a

compact set K with P[X nK] - 1, for every n. Then

lira (x-Ek) lI = 0, with probability one.
n k=l1

REMARK: Note that the convex hull of K need not be condi-

tionally compact. In fact, it is shown in §6.4 that (RR) does

not imply convex tightness.

4.2 Denote the topology on D[0,1] generated by the Skorokhod metric by

% and that generated by the metric given by the su4remum norm

II x II = sup Ix(t) I by Tu. Ve D[0,11 is provided with the suprei nom,o,,tsl

it is a Banach space.

Denote by K the oollection of all subsets K of D[0,1] which have the

property that their convex hulls c o (K) are conditionally cunpact re Ts.

We shall need the following result from [3].

THEOREM 4.5: If K c D[0,1] then K e K if and only if K is

conditionally compact in Tu

LEMMA 4.6: Let (X ) be a sequence of convex tight random

functions in D[0,1]. If E IXnIrS C < = for all n, and some r > 1,

then the sequence (Xn - vn ), where Vn a EXn' is convex tight.

PROOF: To every m a N there is a (Skorokhod) compact, convex

- 1 r

set Km such that P[X OX I < C m for every n. Bym n mi

Theorem 4.5, Km is compact re Tu. Hence, co Km is compact re T

and we assume without loss of generality that Km is convex (and

compact) re Tu  and also that 0 e m

4.i
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Since D[0,1] with the supremum norm is a complete metric
space, Km is totally bounded (no separability is needed here).

Let N(x,e) = {y: II x-y II <e}, x c D[0,1], C > 0.
i

Let {N(x i , - } be a finite cover of Km -m i=l

Now, Hun - n [Xn Km] E11 Xn I[XndKm II

J. r-

T. (E "n" ( 1 r < for every n.n r  [XnKm r< m

Since Km is convex and 0 e Km , E[X n I[X n Km] m Km, for every n,
1 mn2

and hence d(un, Km ) < .1, for all n. Write K(m) u N(xi, 2
adenedi,'m i=l NI~i~)

By the triangle inequality u n c K for every n. Since this

holds for every m,

n c K0  n K for every n.~M= 1

Since K0 is obviously totally bounded, it is conditionally compact(*)

re T The closed convex hull K = co (K ) is compact re Tu 0 u
and consequently conditionally compact also re T

5

Now let c > 0 be given and choose K , compact and convex re

Ts, such that P[Xn e K 3 > 1 - e, for all n. Then

P[Xn - Un e K - K] 2 P[Xn c K and un e K] = P[Xn e K I > 1 - C,

for all n. Since K c K and K a K, K -K e K by Theorem 9.8 of

[2). Thus (Xn - Un) is convex tight. Q.E.D.

It follows from Lemma 4.6 that the conclusion of Theorem 1

0See also (61, Lema 3.1, p. 29.

...... ....
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of [4] can be strengthened to almost sure uniform convergence.

We now state this result in its strengthened form.

THEOREM 4.7: If (X ) is a sequence of independent convexn

tight random functions in D[0,1] satisfying sup E IXn 1jr <1 n n
with r > 1, then lim 1I . (Xk - EXk) II = 0, with probability one.

This result, however, is implied by Theorem 4 of (13], for

which we now provide an alternate proof. Two preliminary results

are needed.

LEMMA 4.8 ([12], p. 123): Let (X n ) be a sequence of real-

valued random variables such that sup EiXnI r < _, for some r > 1.
n

Then there exists a random variable X such that

(i) PEIXnI z a] : P[iXI z a], for all n and a ? 0;

1 1
(ii) E{IXII + 6 } < - for 0 < . < r - 1.

The following theorem is due to Rohatgi [10].

THEOREM 4.9 ([12], p. 68): Let (X ) be a sequence of (real-
n

valued) random variables, with EXn - 0 for every n, and let (ank)

be a Toeplitz sequence. If maxiank i - 0(n5s) for some s > 0,
k

and there is a random variable X satisfying

(i) P[IXnI a a] S P(IXIz a) for all n and a z 0; and

(ii) EIXI1 + 8 <

then

lim ankX - 0, with probability one.
n-* k-l
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THEOjPEM 4.10: Let (Xn ) be a sequence of independent random

functions in D[0,11 satisfying the following condition:

(CT)r:,- To every e > 0 there is K, compact and

convex, such that E llXnI (Xd]r< F

for every n, where r > 1.

Let (a nk be an array of weights satisfying the additional

condition that max =a I ( ), where 0 < .1< r -1

Then
n n

lrn d( I a nk Xk' a ankEXk) = 0, with probability one.
n-- k k=l k

PROOF: Let c > 0 be given and select K, compact and convex

by (CT) rlsuch that

E IlX n I IXn OK]"1 r < c, for every n.()

Note that this implies the existence of EXn , for each n. Without

loss of generality K can be taken to be balanced and symmetric

(write K1 = a K and replace Kby K -K1: cf (2], Theorem 9.8,.p.28);

this in turn implies that K is absolutely convex. This we assume.

Write X k M Xk I[Xk eK]' X k = X k IIx kd K I We have, using LeIm 2.2:

n n n n
d( I a kXk a nkEXk) :9 d(I a nlks a n Tm (Xk))
k=l k!i kai kulmk

+ d( nkTm(k Ian T m (EX k))
k 1 J Tk=1,an

k-i kC
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n o n+ d( I ank Tm (Ex), I ank EXk )  (2)

k=l k=l

n .n ,
+ I ~ ank Xk{l + 11 1 ank EXkI1

k=i k-l

= (I) + (II) + (III) + (IV) + (V).

n

Now E ankXk c K, for all n, since K is absolutely convex. Thus,
k=l

using Lemma 2.2,

(I) : sup d(x, T (X)) < c, for all sufficiently
xCK

large m. (3)
n

Now (II) s {J Tm I ank(Xk - EXk)j{
k=l

nmax m- I I [X k (t)" EXk(ti)3I,
i=0, ...,2 i k=l

using d(x,y) s fl x - ylI and the additivity of Tm . Since K is

compact, the random variables Xk(ti) - EXk(t i ) are uniformly

bounded and so an application of Theorem 3.6 yields
n I M

lira I ank (Xk (t i )  EXklti)) = 0, a.s., for each i = O,l,...,2 -1.n-b" k=l

Hence
n

li max m ank(Xk(ti) - EXk(ti)) = 0,
n i=0,i,... ,2 -1 k-l

a.s. (4)

Since K is convex, EXk c K, for all k, and so, just as for (I),

n o n I(III) = d(Tm( I EXk), I EXk) f. sup d(x,TI) <, (5)

k-i k-i xeK

for all sufficiently large m.
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n I

NOW (IV) + (V) :S k-i la nk (11 X k ji E 1IX k 11)

+ 2 1 EIIJX kII (6)

k=l

Since El llxk 11 - E "lI s 2rE IIk I~ 2~ £ < ~

for every k, where r > 1, by Lemma 4.8 there is a random variable

X such that Mi PIX n 1 2 a] 5 P[iXi a a], all n, all a 2: 0; and
1 1 -

(ii) EJXI i*& < -, where 0 <- < r - 1. Since Maxia nk I 0(n-'),
S k

Theorem 4.9 yields

lrn I la nki (11 X:: 11 - E JJ ) = 0, a.s. (7)
n-- k= 1

From (1) we h~ave

2 1 ja nkI E~iI JJ s 2e. (8)
k=l n

Using (3), (4), (5), (6), (7) and (8) in (2), we get

n n
lrn d( I a n X ' a n EXk) < e + e + 2c =4E, a.s.
n-s k-l k Iklk

Taking a sequence (c n) of positive numbers converging to zero

and taking a union of null sets, we get finally

n n
lim d( I a n X ? an EX k) 0, with probability one,

n' k-i l k k-i
Q.E.D.

That Theorem 4.10 is equivalent to Theorem 4 of (13] is seen

as follows. On the one hand, (CT) r>l implies both (CT) and

(M)r~l , and (CT) implies convex tightness (Lemma 6.8). On the
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other hand, convex tightness and (M)r>I, imply (CT)r>I* Indeed,

let 1 < r < r. We have

r r' r-r'
O In~ [Xn K] [E( JIX nl '  RIX n pXnK ] ]

n
rf r-r'

= (E liX nlr)r [P[XnK 11 r

Now E llXnllr are uniformly bounded by (M)r>I, and P[X n dK] can be

made uniformly arbitrarily small by convex tightness and the

choice of K. Thus, to any c > 0 there is K, compact and convex,

such that E n 'Ix [ K] l~rl< £ for all n, which is condition

(CT) r,>l. Q.E.D.

Although the conclusion of Theorem 4.10 is stated in terms

of convergence in the Skorokhod metric, this can be strengthened

to uniform convergence by an application of Lemma 4.6.

§5. Weak Laws of Large Numbers.

5.1 Weak laws of large numbers for random elements in function

spaces (or more general Banach or Fr~chet spaces) come in two

types. First, there are those based on sufficient conditions

(usually some type of weak uncorrelation) which imply the con-

vergence in probability of the weighted sums. Second, there are

those which provide conditions sufficient to turn pointwise

convergence in probability into convergence in probability in the

metric of the function space; whereupon necessary and sufficient

conditions for the classical weak laws can be invoked to provide

the pointwise convergence. In this section we present one result
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of the first type, and three of the second type which improve on

existing results (for existing results see [121, [151).

5.2 The following theorem uses a condition on second moments

and an uncorrelation condition which looks rather like the condition

(MT) which was used to obtain strong laws in the previous section.

DEFINITION: A sequence (X n ) of random functions in D[0,1]

is said to be pointwise uncorrelated if

Cov(Xk(t), XI(t)) = E[(Xk(t) - EXk(t))(XR(t) - EX£(t))] = 0

for each te[0,1] when k # Z.

THEOREM 5.1: Let (X n ) be a sequence of mean zero, pointwise

uncorrelated random functions in D[0,1] satisfying

1. lim E IIXnII2 = 0;
n- n2 k=l

0

2 To every c > 0 there is a partition P of [0,1]

such that

sup Ef max sup IXk(t)XI(t) - Xk(ti l)X9(ti.1)1] r C.k , 9. i -l , . . . pm t eI .i1

Then lim II . XkI = 0, in probability.
n k=l

PROOF: Let C > 0 be given, and choose, by 20, a partition P

such that

3sup E[ max sup x(t)X(t) X(t )X (tS)]k, , k ki-l i-l 2
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Tien P IX, - E LI k

k--l~ Xk nt)k2]

1 n 2
2 xiAt. X (t)+ xktlXti)

1n
22E[ I sup I X ()Xk(t)Xt)-XKtnl 05.t:5 . k,=1

25 2 E [ nax sup XkKti1iQX9,(il)
nC i k,2 i ,2=1

+ 1 EEla X t,, Xy(ti)X ti)
n c i= k, =

fir tst c term in

1 n
2 1- E Cmx Iu Xkt-lX (Xki-t)]Lt kti) tt

n s i kl 9 ,-=1

2a su I (x (t )X (t X ti XL il)
n ". J,9i tI k iI 4 -
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+ 1 E[max sup (k(t) - x (ti2l i tk kk1
""n n- 2 su

sup E[max sup IX(tX (t) Xk(ti)X (ti M
i teI.

2 n 2, + ; - I E Jxx I
n-2-k=l1 k

<E+2e _ 3 e

4 4 4

for all n a n Hence, for n > n 0

n 3C

P[ I X kII a ne] < - + -=T . Q.E.D.
k=l

5.2 The next result provides sufficient conditions for the

equivalence of pointwise and uniform convergence in probability,

and improves on Theorem 1 of [13].

THEOREM 5.2: Let (X ) be a sequence of random functions inn

D[0,11 having property (MT) and such that E IXn 11<-, for each n.

Let (ank) be a double array of real numbers satisfying I la nk1F,
n k=l

for each n. Then lim l ank(Xk(t) - EXk(t)) = 0, in probability,n-o- k=l1

for each t e [0,1], if and only if

n

lim II ank(Xk - EXk) I1 = 0, in probability.
n-1 k=l

PROOF: Since (X ) has property (MT), so does (X - EX )([14],

proof of Theorem 1). Thus w.l.o.g., we assume EXn - 0, for every n.
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Let n > 0 and e > 0 be given and choose, by (MT), a partition

P such that ,

sup El max sup iX - (ti
.n k~,. ,k tI i 4

n
Then P[ III ankXkIl > E]

k=l

n n
S P11 1 anJ(X - TmXk) > -) + Pul I ank TmXkII .

k=l k=l

n
Now P1 I a nk(Xk - TXk) II >

k=l
2 n

S 1 E I I ank(Xk  T TX k )
C k=1l kk

2 n
S ki1 lankl EII Xk T TXk 11

=2 1 lank I E[ max sup IXk(t) - Xk(t._11]

k=l i=1,... ,m tIk. k
1

2 i n TI C T
2 X lankl 1T

n-•
P11l a T XII > 2

k= 1 k

n
P[I ak m  k l  k k ].2

-- 1 ,kfo l ufcetylren .

Thus toevryx anki0 XklI k- &nk <kI >. , lr

foL all sufficiently large n. Q.E.D.

4



24

Theorem 3 of [4], strengthened to yield uniform convergence,

will now be obtained as a corollary.

COROLLARY 5.3: Let (X n ) be a sequence of convex tight random
inn

functions in D satisfying (M)r>I . Then lirn [ Xk(t) -EXk(t)] = 0
n- k=l

in probability, for each t[0,1], if and only if

i n
S1- 1(X k - EXk) II = 0, in probability.n k=l

PROOF: We have (M) == (UI) and convex tightness and
r> 1

(UI) =- (MT) (§6, Theorem 6.7), and ank = I, k-l,...,n; ank 0,

k > n, satisfies the condition of Theorem 5.2. Q.E.D.

COROLLARY 5.4: Let (X n) be a sequence of random functions

in D[0,1] having property (MT) and such that E IIXnII < a-, for each n.

If

1 cov(Xk(t), Xt(t)) = 0 for each k # 1, for each t e [0,1];

and n2

2 n var(Xk(t)) = o(n2), for each t c[0,1],
k=l

then,
1 n

lim II (Xk - EXk) ii = 0, in probability.
in-c k 1

56. A Comparison of Various Conditions on Random Functions in D0l],

6.1 In this section we investigate relationships among the con-

ditions on a sequence (X n ) of random functions in D[0,1], which

were defined and collected together in 13. The most striking result
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is Theorem 6.7, which asserts the equivalence of convex tightness,
(CT) and (MT) for uniformly integrable sequences. Also, (CT) is

shown to imply convex tightness; (CT) also implies (MT) but uniform

integrability (UI) appears necessary for the converse. Examples

are given to show that many implications cannot be reversed;

however, some open questions remain.

6.2 LEMMA 6.1: If (Xn) satisfies (T) then (Xn) is stochastically

bounded.

PROOF: Let c > 0 be given and let K be compact such that

E JJX n I[X nK]11 < e, for each n. Let c = sup lixil and let
n xcK

6 > max{2,2c}. Then

P[ ItX II >61 < P[ lXn I[X nK] t1 >6 /21 + P[ IIX 1 (X 1K]1 >6 /2]

= 0 + P[ lixn n[xd] 11 >6 /2]

2 Elx < 2I Q.E.D.

LEMMA 6.2: (CT) implies (MT).

PROOF: Let C > 0 be given. By (CT) choose K, compact and

"- convex, such that E JIXn I[ II < c, for every n.

Since K is compact and convex there is a partition P of

10,1] and 6 > 0, using Theorem 3.6 of [3], such that
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sup max sup x(s) - x(t) I < (*)
xcK i=1 ...,m t,sIi

Then E[ max sup IXn(t) -X (tIJ )i-l, . .. ,m t I. n

s E[ max sup IX (t) - X (t ) Ir ]i=l,...,m teI. n n i- [X n K]

+ E[ max sup Ix n(t) - X (t 1) II ]
i=l,...,m t I n - lXn K]

- E(E) + E[2 fIX I [XnK]1 I (using (*))

< -+ , for every n, Q.E.D.

LEMMA 6.3: Let (X n ) be a sequence of random functions in

D[0,1]. If (X n ) satisfies (MT) and is stochastically bounded,

then (X n ) is convex tight.

PROOF: Given c > 0, find by (MT) a partition P such that

sup Elmax sup IXn(t) - X(ti )1] S C.
n i t.it<ti+

This implies that

sup P[max sup IX (t) - X (t.)I >a] <
ti tsti+l n '

for any a > 0.

Let (Ek) and (n k ) be sequences of positive numbers such thatu0

m nk -0 and k c.
k=1
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Let 6k be chosen by stochastic boundedness so that

sup P[ IXnl II I k
n

Let B(6) = {x e D[0,1] :lxii a 6) and define the sets

Ak(C) = {x e B(6k): max sup Ix(t) - x(ti)I }
i ti:t<ti+ 1

2. i+l

where the partition Pk which is used is chosen so that

sup E[max sup IXn(t) - X n(ti)1] : k £k'
n i t it<ti+1

which is possible by (MT).

Then, using (*), we have

sup P[X n n Ak(e)] < k(**)
n

Now put A(e) = n Ak(c). Let n > 0 be given and find k0,

such that k < I T.
k0 2~ I

For x c A(c) we have,

max sup lx(t) - x(ti) i n < 2l n,
i ti:t<t i+ k0

because x e Ak (e). It follows that
k0

max sup Ix(t) - x(t-0) 1 < n, and so
i ti<t<ti+1

S (A()) - {t e 10,11: sup Ix(t) - x(t-O)I > n) is finite
xA()
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(at most 0 the number of points of the partition P) for each

n > 0.

If the set A(c) is conditionally compact, it will follow by

Theorem 6 of [4] that the convex hull co(A(c)) is conditionally

compact.

To prove that A(C) is conditionally compact, we use Theorem

14.3 of [1]. The set A(c) is bounded since x e A(W) implies

II x 11 61. How let a > 0 be given and let k be such that

n 5. Then there is a partition P, by definition of Ak(E),

such that for each x c Ak( ) (a fortiori each x c A(c)), we have

max sup Ix(t) - x(a)I< a.
£ ti t,s<ti+ 1

If 6 = min{t i+ - ti for P, then sup wx(6) < a, and since
i xaA(c) x

a > 0 is arbitrary, lim sup w (6) = 0, so that by Theorem 14.3
6+0 xeA(c) X

of [il, A(W) is conditionally compact in D[0,1].

Thus, co(A(c)) is conditionally compact in D[0,1]. Now,

P[X n d co(A(c))] 5 P[X n d A(c)] = P[Xn e u A (C)] s P[Xnc c()]

k

= I P[Xn d Ak()] : 1 sup P[X n i Ak(e)] < I Ck = c, by (**)
k k n

Since c was arbitrary, (Xn) is convex tight, Q.E.D.

LEMMA 6.4: If (Xn) is convex tight and uniformly integrable,

then (Xn} satisfies (CT).

PROOF: Given c > 0, find by uniform integrability 6 such that
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E IIXn I iXndB(6)]" < e, for each n.

By convex tightness, find K, compact and convex, such that

P(X nK] < , for every n.

Then

E IXn I [XnK]nO = E jiXn I[XnOK; Xn B(6))11

+ E jX n I[X nK; Xn c B(6)111

< c + 6 E I[Xn K; X nB(6)]

I C + 6 E IX nOKI

- £ + 6 P[X nK] < e + e = 2c.

Thus (X n ) satisfies (CT). Q.E.D.

However, by Example 6.3 below, uniform integrability cannot

be replaced by stochastic boundedness in Lemma 6.4.

LEMMA 6.5: If (Xn ) is tight and uniformly integrable, then

(Xn) satisfies (T).

PROOF: Exactly the same as that of Lemma 6.4.

LEMMA 6.6: Uniform integrability implies stochasticbhdsdwss.

PROOF: Let B(6) - (x: It xli 6) Let c > 0 be given and

choose, by (UI), 6 such that E ilXn I[Xn(8)]ll s e, for each n.
n
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Then, for 6 k 1, for every n,

PE IlXnlI k 6] = P1 IIXn I[XndB(6)' 11 63

n.. s E Ix n  Jn B(6)IlI1

f. E Ijx n  Ixn B (6)]l I t, Q.E.D.

THEOREM 6.7: If (X n ) is uniformly integrable, then the

following are equivalent:

10 (Xn) is convex tight;

2 ° (X ) satisfies (CT);
30 (X ) satisfies (MT).

PROOF: 10 =0 20 follows from Lemma 6.4; 20 - 30 from

Lemma 6.2; 30 m 10 from Lemma 6.6 and Lemma 6.3. Q.E.D.

LEMMA 6.8: If (X n ) satisfies (CT) then (X n ) is convex tight.

PROOF: Lemma 6.1 yields: (CT) implies stochastic boundedness.

Now Lemma 6.2 and Lemma 6.3 yield the result, Q.E.D

6.3 Easy examples show that (MT) does not imply tightness nor

does tightness imply (MT).

We write (UI) for uniform integrability and (SB) for stochastic

boundedness.

EXAMPLE 6.1: (UI) does not imply tightness. The counter-

example is the sequence (Xn) of deterministic random functions

mYI .. n 1,2,etc.Xn - ,2- nl,

i, 2 .4. :
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Thus, by Lemma 6.6, (SB) does not imply tightness either.

EXAMPLE 6.2: (SB) .ow (Ul). Let (Xn) be the sequence of
n

random functions defined by

1

n, with probability 
jn'

t = 0, with probability 1- -n, for 0tsl.

EXAMPLE 6.3: Convex tightness and (SB) do not imply (MT).
Let X = X for every n, where X is defined as follows. Let

n

x 22n I 1 . n = 2,3,..., x I = 4 1 1 Let

P[X - xn = -n , n = 1,2,etc. Then X is convex tight and stochas-

tically bounded. But for any partition P of [0,11,

E{ max sup IX(t) - X(tiI} Z Et sup IX(t) - X(O)I]
il,...,m tel i  0st<t I1

n 2

-E[ sup IX(t)I] - 2-n. 2 2n +
Ost~t 1  n 0

-n+1
where n0 is such that 2 < tI. Thus (MT) fails, Q.E.D.

Thus, by Lemma 6.2, convex tightness and (SB) do not imply (CT).

6.4 We have (CT) -> (MT) -0 (mT) - (RR). The first impli-

cation follows from Lemma 6.2 and the last two are obvious.

EXAMPLE 6.4: (mT) -#>(MT). Define a random function X as

follows. Let 0 - [0,11 with Lebesgue measure. Let X(w) - (wl ]*

Let C > 0 be given and choose a partition P of [0,11 such that

max (t1 - til 1 < c. Then

i-l, .. ,

- '4
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E[ sup lX(t) - X(t )I] =t i - ti 1 < C',
tel

for each i, so that (mT) is satisfied. However,

E[ max sup IX(t) - X(tiil)I] = ,i=l,...,m tCI.
1

for any partition P, so that (MT) fails. Q.E.D.

Since tightness implies (SB), by Lemma 6.3, (MT) and tight-

ness imply convex tightness. That (mT) and tightness do not imply

convex tightness is shown by Example 6.4.

EXAMPLE 6.5: (T) - (MT). Let X be the random function

of Example 6.4. (MT) fails. Let

K= {x=I [Wl1: 0 < W 1 - < 11

where 0 < E < 1. Then KE is conditionally compact in D,and

E liX I[ ]  = + = c. Since e is arbitrary, (T) is satisfied.[34K] i 2

Q.E.D.

Clearly, also (MT) =#> (T), so that no implication holds

between the two conditions.

LEMMA 6.9: For a random function X in D with E IIxI < ,

condition (mT) is satisfied.

PROOF: For O a < 0 S 1, let p(c,B) = E[ sup IX(t) - X(s)I].
0:St, 8<0

Let " 1 if p(0,1) & c; otherwise, let T- inf(t: p(O,t) > el.01
Since lim p(0,1) = lim E[ sup 1 IX(t) - X(s)I]

n n*



33

= E[lim sup 1 IX(t) - X(s)I] = 0,
n -, 0 t, s< -

n

by the dominated convergence theorem, using E liXil < m, we have

T > 0.
In general, let T = 1 if p(T j 1l') : e, and let

T. = inf{t: t > Tj_ 1 and P(Tj_lt) > £ 1, otherwise . Again

T. < Tj+l.

Now suppose that T. < 1, for every j = 1,2,.... Since

(Tn ) is monotonically increasing it converges to some to 6(0,1],

and since X c D,

lim sup Ix(s) - x(t)J = jX(t 0) - X(t 0 ) j = 0.
n*o Tnt,S<T n+l

Thus, C < lim E[ sup jX(t) - X(s)J] = 0, a contradiction.
n-w T n t,S<Tn+1

This proves the lemma. Q.E.D.

EXAMPLE 6.6: (RR) and (M) 96> tightness. Let

X. = 1 1#2,...#2 n - l - 1
2I nn)12-,2 n~ - ,,.,

x =I
2n- 1 2 n - 1 ,

S ,nn

Define the random function Xn by

Pxn =i x 1 1 , for 1- 1,2,...,2

We show that (ml is satisfied. Let P be a partition and

,A
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let IIPhI be its norm. I

Given an interval ft i 1 1ti I of P, for fixed n there can be

at most [2 IIlp 11, + 1 values of j such that the interval where

x.J is = 1 has a non-empty intersection with [t i 1 t']. ([ is

the greatest integer function). Thus,

P{W: sup 1 Ix~ (t) - Xn(ti )~I = 1} !5 ([2n II
1 1_ tt

5(2 n IIplH + 1)-__ IlPII + -, and so
2 n 2 n

E[sp IX (t) Xn(t.QI P{sp X (t) - xn t

s 11 Pit + ,and this holds for each i =1,.2

Let e > 0 be given. Choose IIPIl < Eand n0 such that

< Then

2n 0 2

sup max E( sup IX nt) - X n(t 1 )I] :5C
n=n 0 n 0+l ,... i ti15~

Now refine P so that this holds for n=l,...,n 0-1. Also

sup max E[ sup Ix ntW - X n(ti ~~'e
fl i t i 1 !t i

But this is (mT).

But the sequence (X ) is obviously not tight; this can be
n

seen by Theorem 15.2 of Billingsley; in fact
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urn Pfw X(6) > e] 1

if 0 < e < 1, for any 6 > 0.

Since (X n) satisfies (mT) but is not tight, it satisfies

(RR) and is not tight. (M) holds since every X n is bounded by one.

Q.E.D.

LEMMA 6.10: if (X )satisfies (RR) and (T), then itn

satisfies (mT) .

PROOF: Let C > 0 be given, and by (T), choose K, compact,

such that E IIX I [K] 1 < e, for all ni, and let P be a partition of

[0,1] such that (RR) holds. Choose 6 > 0 such thatj

0 :5 s :5 t < n < s + 6 :5 1 implies

Ix(t) - x(s)j I x I(u-0) - x (s) I + e, f or all x e K.

By adding points to P if necessary, arrange for max ft. t. ..} < 6.

I If

Write X n XnI[XeI and X n =XnI[Xn ,Th ,

ma nl supK X n t) K Then, (

Smax E t sup IX (t) - X '( (tI)I

+ max E[ sup IX (t) - X t )I]

II

!9 ,ma ErIX n(t i-0) Xn X(ti 1 ) I' + + 2EIIXnII



36

S max sup E[IXn(t) - Xn (ti_I )  + c + 2E

< c + c + 2c = 4c, and thus (mT) is satisfied. Q.E.D.

6.4 We have the following diagram:

(M)r> 1 --b (MI) --b.(SB)

(M) f= (T) 4- (CT) = (MT) -d- (mT) =c, (RR)

convex
tight

Figure 1.

6.5 Scme Open Questions

1 Does (R) imply (MTr) ?

20 Does (RE) together with () imply (Ar) ?

4-.. ... .. ,
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